Table of Contents

- **Introduction** ... 3
- **The aims of Geography in the Curriculum** 3
- **Approaches to teaching and learning for Geography** 4
- **Assessment in Geography** .. 7
- **Make Geography Relevant** .. 7
- **Learning Outcomes** .. 12
- **Kisbiet mit-Tagħlim** .. 13
- **Assessment Criteria** .. 14
- **Kriterji tal-Assessjar** ... 16
- **Scheme of Assessment** ... 19
- **School-Based Assessment Tasks** .. 20
- **Marking Criteria** ... 23
- **Reporting to Parents/Guardians** ... 25
- **List of Geographical terms – English to Maltese** 26
- **Sample Paper** ... 29
Introduction

This syllabus is based on the curriculum principles outlined in the *The National Curriculum Framework for All (NCF)* which was translated into law in 2012 and designed using the *Learning Outcomes Framework* that identify what students should know and be able to do by the end of compulsory education. It is linked to the national curriculum learning area Humanities Education and builds on the knowledge and skills students have acquired previously in the Primary years of schooling.

This learning outcomes-based programme addresses the holistic development of all learners and advocates a quality education for all as part of a coherent strategy for lifelong learning. It ensures that all children have the opportunity to obtain the necessary skills and attitudes to be future active citizens and to succeed at work and in society irrespective of socio-economic, cultural, racial, ethnic, religious, gender and sexual status. This learning and assessment programme provides equitable opportunities for all learners to achieve educational outcomes at the end of their schooling which will enable them to participate in lifelong and adult learning, reduce the high incidence of early school leaving and ensure that all learners attain key competences required in the 21st Century.

This programme also embeds learning outcomes related to cross-curricular themes, namely digital literacy; diversity; entrepreneurship creativity and innovation; sustainable development; learning to learn and cooperative learning and literacy. In this way students will be fully equipped with the skills, knowledge, attitudes and values needed to further learning, work, life and citizenship.

This Geography learning and assessment programme enables students to develop spatial understanding of the local, regional and global environment as well as physical, economic and political interactions within and between communities. It encourages learners to acquire an understanding of sustainable development and an awareness of the need to conserve the environment for future generations. It provides students with the opportunities to explore certain themes in the physical and human fields of geography in a practical way, both inside the classroom through case studies and outside the classroom through fieldwork.

The aims of Geography in the curriculum

Geography as a discipline enables us to understand the Earth we are living in from a spatial perspective. As a school subject it enables students to explore and understand the relationship between human beings and the Earth through the study of space, place and the environment. Geography makes both a distinctive and a wider contribution to the curriculum. It is an essential component in preparing young people for life in the twenty-first century. As the pace of change quickens, communications get faster and challenges to the environment multiply, a knowledge and understanding of geography is more vital than ever. Geographical education is indispensable to the development of responsible and active citizens in the present and future world. Geography can be an informing and stimulating subject at all levels in education, and contributes to a lifelong enjoyment and understanding of our world. Learners require global geographical awareness in order to ensure effective cooperation on a
broad range of economic, political, cultural and environmental issues in a shrinking world. Geography addresses the major challenges that the global community is facing. The resolution of major issues facing our world requires the full commitment of people of all generations.

The aims of the curriculum are:

- to develop in young people an interest in and a sense of wonder about the place where they live in, of other places and people; in particular the spatial arrangement of different environments, the processes that shape our world, and how people and environments inter-relate and interconnect;
- to enable students become informed, responsible and active global citizens by fostering an appreciation of environments, thereby enhancing a sense of responsibility for other people and the long-term sustainability of the planet;
- to prepare students to think and enquire in a geographical way equipping them to discovery, gather, organise, analyse, use and present new geographical knowledge obtained from maps, data, digital technologies and fieldwork in order to make sense of new situations.

Approaches to teaching and learning for Geography

Geography stimulates an interest in and a sense of wonder about places. This sense of wonder and the complexity of the world can best be achieved through a range of methodologies requiring an enquiry approach for the investigation of the location, situation, interaction, spatial distribution and differentiation of features. The learning process centres more on students’ activities such as group work, than on the passive reception of knowledge and understanding through teacher exposition. Students should be active in the learning process and they acquire knowledge and develop skills through fieldwork and out of class learning, through the use of Information Technology, resources including maps, as well as games, simulations and role play. An enquiry can be based on a single resource such as a map, a photograph, an item from the internet, statistics from which students extract data, ideas, facts and attitudes to answer a geographical question or solve a problem. Such questions can come directly from students through discussion. The use of group work helps to facilitate the active characteristics of much enquiry work.

Geography is the discipline which seeks to explain the character of places and the distribution of features and events as they occur and change the surface of the earth. Geography is concerned with human – environment interactions in the context of specific places and locations. In addition to its central concern with space and place, it is characterised by a breath of study, a range of methodologies, a willingness to synthesise work from other disciplines and an interest in the future of people – environment relationships.

Geography often starts with the following questions:

- Where is it?
- What is it like?
- Why is it there?
- When did it happen and how does it change?
- What impacts does it have?
- How should it be managed for the mutual benefit of humanity and the natural environment?

Finding answers to these questions requires investigation of the location, situation, interaction, spatial distribution and differentiation of features. Explanations of current situations come from both historical and contemporary sources. Trends can be identified which indicate possible future developments. Some of the central concepts of geographical studies are location and distribution, place, people-environment relationships, spatial interaction and regions.

Learning through fieldwork

Fieldwork provides opportunities for first-hand investigation of people in their environment and as such awakens students to a diversity of environments and cultures, in their local area and beyond. It teaches students to collect, analyse and present data, sharpening their observations, measuring, recording and evaluation skills. Fieldwork has important contributions to make geography real and enjoyable and as a result every geography student should be entitled to have a reasonable amount of exposure to fieldwork experience through the geography course. Fieldwork should not be limited to visits and guided tours, whereby students are involved only in passive activities such as listening, observing and note-taking. Fieldwork should be enquiry-based in-line with the aims and objectives of this curriculum. It should involve students in identification of an issue or problem in a specific area, collect, present and analyse data and finally identify possible solutions or strategies.

Learning through maps

Maps in the form of paper, digital images and globes are an important tool for geographers and enable us to record, display and analyse information about people and environments. Teachers should ensure that their students are able to master a reasonable level of mapping skills and integrate such skills into the learning and teaching of geographical issues in the curriculum. Understanding and using maps involve the simultaneous use of a number of concepts and skills including aerial perspective, proportion, map language and arrangement. Students should be given the opportunity to develop their map literacy so that they can use maps to find out about and interpret the world around them in a critical informed way. In an enquiry based approach students should have access to a wide range of maps including large wall maps, atlases, globes, maps on CD-ROMs and other electronic media, including Google Map and Google Earth.

Learning through information technology

Information and Communications technology, whether it is a personal computer, an interactive whiteboard or a mobile phone, influences how students make sense of their world today and at the same time offers a range of tools to support their geographical understanding. Specific programs, such as Google Earth, can improve spatial thinking and electronic media and the internet enables students to gain up-to-date information and access a vast range of images, videos, data and other sources which can enrich geographical understanding. By using IT teachers can make lessons enjoyable thus enhancing students’
learning motivation. Geography teachers should provide adequate opportunities for their students to apply IT in their enquiry-based approach because IT:

- provides a range of information sources to enhance geographical understanding
- supports the development of a body of geographical knowledge
- provides images of people, places and environments
- helps students develop their ideas using ICT tools to amend and refine their work and enhance its quality and accuracy
- helps students exchange and share information, both directly and through electronic media
- provides students with the ability to review, modify and evaluate their work, reflecting critically on its quality as it progresses
- contributes to pupils’ awareness of the impact of information systems on the changing world
- contributes substantially to the development of a range of IT capabilities, especially with regards to data handling, use of communication technologies and information sources and modelling
- develops the students’ skills in the following IT toolkit namely word processor; spreadsheet; presentation software; desktop publishing (DTP) software; internet browser/e-mail; electronic atlas; electronic encyclopaedia; geographic information system (GIS); automatic datalogging weather station; digital camera.

This programme provides opportunities for using IT and a wide range of approaches will be used to develop students’ IT capability and enhance the quality of their geography experience.

Learning through the use of resources

A good geographical enquiry usually involves the use and analysis of a rich variety of resources including worksheets, textbooks, maps, models, computer software, interactive games, the internet, newspaper resources, weather instruments, specific items (rock samples and tools) and many others. Very often such resources arouse students’ motivation and engage them in active learning situations that meet their varied needs. Besides this, such an extensive range of resources enhance students’ learning experiences and are seen by many as a key attraction of the subject. Ideally geography should be taught in a special room which includes:

- adequate space for students preferably equipped with desks with flat surfaces for practical work especially map work;
- spacious environment for the storage and effective use of resources including, maps, books, charts, apparatus, posters and handouts;
- various kinds of wall maps including those of the Maltese Islands, the Mediterranean region, Europe and the World;
- globes, including political, relief and activity globes that can be marked and cleaned;
- meteorological and fieldwork instruments;
- computers with internet access;
- interactive whiteboard;
- water supply for use in simple experiments and model making.
Students should be encouraged also to handle and use such resources during breaks or when geography related extra-curricular activities are being organised in school.

Making Geography Relevant

Our main challenge as geography teachers is to make the themes in our learning and assessment programmes as relevant to our students as we can, so that they can engage with learning and maintain interest, enjoyment and motivation. This can be achieved by:

2. Encouraging students to choose events that have meaning for them.
3. Allowing students to present their work in various ways – some may enjoy presentations, others prefer to write, research or want to devise a poster, travel leaflet or information board.
4. Keeping up with interesting news items by maintaining a news board.
5. Making teaching fun – having fun while you are learning something new makes it easier to persevere. Doing something, interacting, getting involved and even better, explaining how you worked it out to someone else, are the most effective. Teachers talk or reading the textbook or notes are the least effective.
6. Be out of the ordinary by making lessons surprising. Students should not know exactly what is going to happen every time they have a geography lesson. Using the same teaching strategy becomes too routine and boring.

Assessment in Geography

Assessment in geography must assess the student’s understanding and application of the main geographical concepts and knowledge, the acquisition of basic geographical skills and the development of attitudes and values contributing to sustainable development. A range of assessment techniques will be necessary and all of these approaches should arise as naturally as possible for students to perform to their true ability.

The following list includes examples of different modes of assessment that may be considered by educators:

- map reading exercise
- oral presentation
- debate
- role play
• research work from Internet and books
• free-response writing or essay writing
• data-response tasks
• labelling and sketching of diagrams
• designing an advert, flyer or poster
• model-making
• active participation in a co-curricular project
• experiments
• structured questions
• mind maps
• reporting on site visits
• commenting on videos
• use of online sources and software to locate places
• analysis of newspaper articles
• self-assessment through checklist
• quiz
• problem-solving activity
• resource-based questions

The most valuable information about students’ achievements comes from day-to-day observations, especially through effective questioning and discussions as the students work. Such information is necessary to make judgments of what they know, what are their strengths, weaknesses and misconceptions; thus adjusting the pace and choosing the most appropriate teaching strategies to reach the learning objectives. This can be achieved through:

• observation and listening to students as they work;
• the responses the students make to questions set;
• participation of the student in discussions;
• marking and providing quality feedback to student’s work;
• reflecting on and critically evaluating their own work as well as through the involvement of students in peer assessment processes.

Valuable information about students’ attainment can also be observed and assessed while students are engaged in a range of classroom situations. These activities may include:

• collecting information from primary and secondary sources;
• direct observation in the field;
• predicting outcomes after conducting simple experiments;
• completing work cards or handouts;
• oral presentations;
• written work or class tests;
• drawing and analysing maps;
• using and interpreting graphs;
• collecting information from electronic media;
• carrying out independently geographical research and recording and presenting results in project work.

The use of a range of tasks incorporating different levels of difficulty and in diverse modes will enable the teacher to assess more accurately the level of geographical understanding of students with different aptitudes and abilities.

These types of formative assessment procedures give teachers the most valuable information about students’ attainments and have the most impact on their progress. However, summative assessments such as the annual examinations set by the Education Assessment Unit should not be used simply to rank students’ performance or perhaps to inform parents about students’ attainment. Such examinations can also have a formative element by encouraging students to reflect on their performance, and at the same time helping teachers evaluate the success of their teaching and setting targets for improvements. Students’ progress can be documented and assessed through the collection of a range of samples of their work in geography portfolios. It may contain a small sample of evidence which exemplifies student’s efforts and may include map work, photographs of models constructed, write ups and images of places visited, record sheets from experiments, together with student’s written work in the form of handouts or research work from secondary sources such as the internet.

Assessment for learning

Assessment for Learning (AFL) occurs when evidence is used to adapt the teaching to meet the needs of the students. Assessment for Learning enhances learning for all types of students because it is there to build a bridge between what is known and what lies on the next step.

1. **Understanding what students know**

Before starting to teach a new topic or concept, we need to become aware of what are the pupils’ perceptions on the subject. Techniques that can be used include brainstorming, questioning, survey, concept mapping, mind web, discussion, short test, evaluate written work done at home or at school.

2. **Effective Questioning Techniques**

We should consider the use of open challenging questions which allow a range of correct responses and require students to think. More wait time is required. This wait time has to be of around five seconds. Students usually leave the answering of questions to the few most able students in class or else when we use a ‘hands up’ technique, only those that are sure of the answer put up their hand as the others would not want to risk. What about the rest of the students? How will we know that these students have grasped the concept or the skill? Therefore avoid the hands up technique and give everybody an opportunity to answer. Questions can be of the following type:

- **Literal Questions**

- **Application Questions**
 Can you think of another situation similar to this? Do you know of another story that deals with the same issues? Do you know where else this can be used?
• **Analytical Questions**
What makes you think that? Can you support your view with evidence? Why do you think this was written/given in such a way? Why did you decide to do it in such a way?

• **Synthesis Questions**
What is your opinion? What evidence do you have to support your view? Given what you know about... what do you think? If you were ...what would you think

• **Evaluation Questions**
What makes this... successful? Does it work if done in another way? Which is better and why?

3. Oral Feedback during the lesson
Feedback is fundamental. It gives the opportunity to students to improve in their learning. Feedback has to be from teacher to student, student to teacher and student to student. Good oral feedback should:

1. focus on the student’s work not on the person
2. state specific ways on how the work can be improved
3. compare the work the student produced with what was previously done
4. do it all along the activity
5. be critically constructive use
6. comments that push the learning forward
7. use a language that does not intimidate the students
8. consider all the students’ comments
9. focus on the learning intentions explained at the beginning

4. Oral and Written Feedback after the lesson
‘It is the nature, rather than the amount, that is critical when giving pupils feedback on both oral and written feedback’. (Black 2004)

Written feedback can be in the form of grades or comments or both. A numerical mark does not tell the students what needs to be improved in their work and therefore an opportunity to enhance their learning is lost. When a comment is written next to the grade, students tend to ignore the comment and all the corrections the teacher does. The mark becomes a measure of their ability.

Give students the correct advice that would lead them to correct their mistakes. This advice has to be concordant with the learning intention. The advice should be a very short piece of information about where the students achieved success and where they could improve to achieve the learning intention.

The work should go back to the student who must be given time to carry out the requested changes. The work will then go back to the teacher who will correct it and give another advice on what can be done next to enhance learning.
Comments need to begin with what has been a success, move on to show what needs to be improved and give advice on how this improvement can be achieved. It should focus on specifics by asking a specific question about what went wrong and ask questions that prompt a student to be more specific. The feedback given should stimulate the student to improve. It should be challenging enough to motivate the students to learn. Visible improvements will increase the students’ self-esteem.
LEARNING AND ASSESSMENT PROGRAMME

Learning Outcomes

<table>
<thead>
<tr>
<th>7.1</th>
<th>I can use aerial photos, maps, the internet, interactive maps and software to locate various key physical and human features of Malta, the Mediterranean, Europe and the wider world.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>I can use different sources to distinguish between a country, continents and oceans.</td>
</tr>
<tr>
<td>7.3</td>
<td>I can use the basic mapping skills which include a scale, a key, compass points and the GPS to plan real journeys.</td>
</tr>
<tr>
<td>7.4</td>
<td>I can use appropriate sources to observe and record local weather.</td>
</tr>
<tr>
<td>7.5</td>
<td>I can read the weather report and forecast of local and foreign places using digital media.</td>
</tr>
<tr>
<td>7.6</td>
<td>I can investigate about the intercultural composition of my local community and/or school community.</td>
</tr>
<tr>
<td>7.7</td>
<td>I can account for the presence of fossils in the sedimentary layers of the Maltese rocks.</td>
</tr>
<tr>
<td>7.8</td>
<td>I can recognize rock samples of the five main types of rock of the Maltese Islands, namely Upper Coralline Limestone, Greensands, Blue Clay, Globigerina Limestone and Lower Coralline Limestone.</td>
</tr>
<tr>
<td>7.9</td>
<td>I can describe the main characteristics (porosity, permeability, resistance and colour) of the five main types of rock found in the Maltese Islands.</td>
</tr>
<tr>
<td>7.10</td>
<td>I can explain the use of the rocks of the Maltese Islands.</td>
</tr>
</tbody>
</table>
Kisbiet mit-Taghlim

<table>
<thead>
<tr>
<th>Is-Seba’ Sena</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
</tr>
<tr>
<td>7.2</td>
</tr>
<tr>
<td>7.3</td>
</tr>
<tr>
<td>7.4</td>
</tr>
<tr>
<td>7.5</td>
</tr>
<tr>
<td>7.6</td>
</tr>
<tr>
<td>7.7</td>
</tr>
<tr>
<td>7.8</td>
</tr>
<tr>
<td>7.9</td>
</tr>
<tr>
<td>7.10</td>
</tr>
</tbody>
</table>
Assessment Criteria

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>Assessment Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1
I can use aerial photos, maps, the internet, interactive maps and software to locate various key physical and human features of Malta, the Mediterranean, Europe and the wider world.</td>
<td>- This is a general outcome indicating the skills to be applied in pursuance of all outcomes.</td>
</tr>
</tbody>
</table>
| **7.2**
I can use different sources to distinguish between a country, a continent and an ocean. | - Differentiate between a country, a continent and an ocean.
- Use different types of political maps to name examples of countries, continents and oceans. |
| **7.3**
I can use the basic mapping skills which include a scale, a key, compass points and the GPS to plan real journeys. | - Draw objects and plans of rooms as seen from above as representations of maps.
- Locate and mark features on a plan of the school grounds and village.
- Use the key of the map to identify human and physical features and places on the map.
- Draw an imaginary map of an island using given instructions.
- Use the eight points of the compass to give and follow directions on simple maps.
- Use a linear scale to calculate real distance.
- Measure straight line distances on maps using the linear scale.
- Use Google Maps or any other mapping app to measure distances and calculate routes.
- Identify and name the major seven lines of latitude and longitude namely the Equator, the two tropics, Arctic and Antarctic Circles, Prime Meridian and International Date Line.
- Locate the Poles on a globe.
- Find places on a map by the use of latitudes and longitudes as coordinates.
- Use Google Maps or any other mapping app to figure out the best way to get to places and to plan journeys using various modes of transport. |
| **7.4**
I can use appropriate sources to observe and record local weather. | - Define the elements of the weather namely temperature, rainfall, wind direction and speed.
- Use the following weather instruments namely; the anemometer, wind vane, rain gauge, maximum and minimum thermometers to collect data. |
<table>
<thead>
<tr>
<th>7.5</th>
<th>I can read the weather report and forecast of local and foreign places using digital media.</th>
</tr>
</thead>
</table>
| | - Identify the best location for each of the above named weather instruments to provide valid results.
- Explain the use and characteristics of the Stevenson Screen to provide accurate temperature readings.
- Plot and read separate temperature and precipitation graphs from data presented. |

<table>
<thead>
<tr>
<th>7.6</th>
<th>I can investigate the intercultural composition of my local community and/or school community.</th>
</tr>
</thead>
</table>
| | - Use the internet to find out the weather report and forecast of local and foreign places.
- Conduct a survey regarding the nationality of a select number of students/community members.
- Present the results obtained from the survey by means of maps, graphs, pictographs etc.
- Research about the geography and other aspects (flag/language/customs/cuisine) of the country of origin of students/community members. |

<table>
<thead>
<tr>
<th>7.7</th>
<th>I can account for the presence of fossils in the sedimentary layers of the Maltese rocks.</th>
</tr>
</thead>
</table>
| | - Conduct simple experiment to build a sedimentary block of rock, including sea shells, etc.
- Describe in simple terms the processes involved in the formation of sedimentary rocks and fossils.
- Identify the youngest and oldest layers in a sequence of rock strata. |

<table>
<thead>
<tr>
<th>7.8</th>
<th>I can recognize rock samples of the five main types of rock of the Maltese Islands, namely Upper Coralline Limestone, Greensands, Blue Clay, Globigerina Limestone and Lower Coralline Limestone.</th>
</tr>
</thead>
</table>
| | - Recognise by the use of rock samples and imagery the five main rock types of the Maltese Islands.
- Draw and label a diagram showing the local geological sequence of rock strata.
- Identify the surface rock in different parts of the Maltese Islands using a simple geological map. |

<table>
<thead>
<tr>
<th>7.9</th>
<th>I can describe the main characteristics (porosity, permeability, resistance and colour) of the five main types of rock found in the Maltese Islands.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Describe the main characteristics of each rock type found in the Maltese Islands.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.10</th>
<th>I can explain the use of the rocks of the Maltese Islands.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Give the main uses of each rock type found in the Maltese Islands.</td>
</tr>
</tbody>
</table>
Kriterji tal-Assessjar

<table>
<thead>
<tr>
<th>Kisba mit-Tagħlim</th>
<th>Kriterji tal-Assessjar</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Din hija kisba mit-tagħlim ġenerali u għandha tintuża matul il-programm kollu biex permezz tagħha jintlaħqu il-kisbiet l-ohra.</td>
</tr>
<tr>
<td>7.2</td>
<td></td>
</tr>
</tbody>
</table>
| Kapaċi nuża sorsi differenti biex niddistingwi bejn pajjiżi, kontinenti u oċeani. | Nuri d-differenza bejn, pajjiż, kontinent u oceani.
|
| Nuża tipi differenti ta’ mapep politiċi biex insemmi eżempji ta’ pajjiżi, kontinenti u oceani. |
| **7.3** |
| Kapaċi nuża l-ħiliet bażiċi tal-kartografija li jinkludu l-iskala tal-mappa, it-tagħrif dwar il-mappa (key), id-direzzjonijiet tal-boxxla u l-GPS biex nippjana vjaġġi varji. | Inpinġi oġġetti u pjanti ta’ kmamar kif jidhru minn fuq li jservu bħala mapep.
| Nimmara fattizzi fuq pjanta tal-iskola u tal-lokalità tiegħi.
| Nuża t-tagħrif (key) biex nagħrafej fattizzi umani u fiżiċi u postijiet fuq il-mappa.
| Inpinġi mappa immaginarja ta’ gżira skont istruzzjonijiet mogħtija.
| Nuża t-tmien ponot tal-boxxla biex nagħti u nsegni direzzjonijiet fuq mapep bażiċi.
| Nuża l-iskala lineari tal-mappa biex inkejjel id-distanzi.
| Inkejjel distanzi dritt fuq il-mapep bl-għajnuna tal-iskala lineari.
| Nuża Google Maps jew xi app simili biex inkejjel id-distanzi u nippjana rotot.
| Nagħrafej u nsemmi s-seba’ linji ewlenin tal-latitutni u longitutni, jiġifieri l-Ekwatur, it-Tropiku tal-Kankru, it-Tropiku tal-Kaprikornu, ċirku Artiku u ċ-Ĉirku Antartiku, il-Meridjan ta’ Greenwich u il-Linja tad-Data Internazzjonali.
| Nillokalizza il-poli fuq globu.
| Insib postijiet fuq mappa bl-użu tal-latitutni u l-longitutni.
| Nuża Google Maps jew xi app simili ohra biex insib l-ehlef mod biex nasal f’post u biex nippjana vjaġġi b’modi differenti ta’ trasport. |
7.4
Kapaċi nuża s-sorsi xierqa biex noggosserva u nirrekordja t-temp lokali.

- Niddefinixxi l-elementi tat-temp, li jinkludu t-temperatura, ix-xita, id-direzzjoni u s-saħħa tar-riħ.
- Nuża dawn l-strumenti; l-anemometru, il-pinnur, il-pluvjometru, u t-termometru (temperatura massima u minima) biex niġbor tagħrif dwar it-temp.
- Nididentifika l-ahjar post fejn l-strumenti tat-temp imsemmija hawn fuq jitpoġġew biex jagħtuna kejl validu.
- Nispjega l-użu u l-karateristici tal-ilqugh ta’ Stevenson biex jagħtina il-kejk preċiż tat-tempertura.
- Inpinġi u naqra graff tat-temperatura u tax-xita (fuq graffs separat) minn tagħrif mogħti.

7.5
Kapaċi naqra r-rapport u t-tbassir tat-temp lokali u ta’ pajjiżi barranin minn fuq mezzi digitali.

- Nuża l-internett biex insib ir-rapport u t-tbassir tat-temp tal-lokal u ta’ pajjiżi barranin.

7.6
Kapaċi ninvestiga l-kompożizzjoni interkulturali tal-komunità fejn nghix u/jew tal-iskola tiegħi.

- Nagħmel stħarriġ dwar in-nazzjonalità ta’ numru ta’ studenti/residenti fil-località.
- Uri r-rizultat tal-istħarriġ bl-uzu ta’ mapep, tipi differenti ta’ graffs, eċċ.
- Agħmel ricerka dwar il-geografiża u xi aspetti ahra (bandiera/lingwa; użanzi/ikel) ta’ pajjiżi barrani minn fejn ikunu ġejji l-istudenti/ residenti fil-località.

7.7
Kapaċi nispjega l-presenza ta’ fossili fis-saffi ta’ blat sedimentarju ta’ Malta.

- Nagħmel esperiment biex nibni blokka ta’ blat sedimentarju li jinkludi xi arzeli tal-bahar, eċċ.
- Niddiskrivi b’mod bażiku kif jiforma l-blat sedimentarju u l-fossili li nsibu fih.
- Nididentifika l-eqdem blat u l-aktar blat riċenti meta nara strati ta’ blat sedimentarju.

7.8
Kapaċi nagħraf kampjuni tal-hames saffi ta’ blat tal-Gżejjer Maltin, jiġifieri l-ġebel tal-Qawww ta’ Fuq, ir-Rina, it-Tafal, il-Globiġerina u l-Qawww ta’ Taħt (Żonqor).

- Nagħraf bl-uzu ta’ kampjun u stampi l-hames saffi ta’ blat tal-gżejjer Maltin.
- Inpinġi u nillébilja disinn li juri s-sekwenza tas-saffi tal-blat li nsibu fil-gżejjer Maltin.
- Nididentifika liema saff ta’ blat jinsab fil-wiċċ f’postijiet differenti tal-gżejjer Maltin bl-uzu ta’ mappa ġeoloġika.

7.9
Kapaċi niddiskrivi l-karatteristici ewlenin (porosità, permeabbiltà, saħħa u kulur) tal-hames saffi

- Niddiskrivi l-karatteristici ewlenin ta’ kull saff ta’ blat li nsibu fil-Gżejjer Maltin.
<table>
<thead>
<tr>
<th>ta’ blat li nsibu fil-gzejjer Maltin.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.10</td>
<td>Kapaċi nispjega l-użu tal-blat tal-gzejjer Maltin.</td>
</tr>
<tr>
<td></td>
<td>● Nsemmi għalfejn jintuża kull saffi ta’ blat li nsibu fil-gzejjer Maltin.</td>
</tr>
</tbody>
</table>

Learning outcomes are student-centred in that they focus on the knowledge and skills that will be most valuable to the student now and in the future. As a result, schools may wish to adapt this outcome-based syllabus to meet the needs of students with learning difficulties or with challenging behaviour. In this case teachers may opt to concentrate on certain learning outcomes. Assessment for an adapted syllabus should be based 100% on a variety of school-based tasks. The more varied the tasks, the greater is the validity of the whole assessment exercise. Students following such an adapted syllabus will be exempted from the end of year examination set by the Directorate for Learning and Assessment Programmes.
Scheme of Assessment

The examination consists of:

Summative assessment: (60% of the total marks; comprising of a one hour written exam) set at the end of the scholastic year.

School-based assessment: (40% of the total marks; comprising of two tasks of equal weighting, i.e. 20% each) set during the scholastic year.

Summative assessment: (60% of the total mark)

The controlled component of the assessment will consist of a paper of one-hour duration carrying 60% of the final mark and set by the Directorate for Learning and Assessment Programmes. There will be two versions of the paper, one in English and one in Maltese. Schools are to indicate the number of papers required in either language. The examination will carry 100 marks and questions will be set on the following Learning Outcomes: 7.1, 7.2, 7.3, 7.4, 7.5, 7.7, 7.8, 7.9 and 7.10.

Questions will be structured with gradients of difficulty including objective questions (e.g. completion, true/false, multiple choice questions, cloze questions) resource based questions involving data response and problem solving as well as free response writing. The questions set will assess the students’ understanding and application of the main geographical concepts and knowledge, the acquisition of basic geographical skills and the development of attitudes and values as required in the Learning Programme. Candidates will be required to answer all questions.

School-Based Assessment (40% of the total mark)

Each school-based assignment is marked out of 20 marks and will carry 20% of the total mark. The average mark of these two assignments will contribute to 40% of the total marks of the examination. It is recommended that a significant proportion of SBA will be done in class under direct teacher supervision. These assignments will be set and marked by the teacher. It is suggested that a third task is carried out in order to make up for a task that the students might have missed due to sickness or excused absences.

Teachers can choose any **TWO** tasks from the following:
School-Based Assessment Tasks

| TASK 1 | Learning Outcome 7.3
Assessment Criteria: Draw an imaginary map of an island using given instructions. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20 marks</td>
<td>Provide students with an outline map of an imaginary island (or let them draw the outline themselves). You can provide clear instructions what particular features to include or else let the students fill the map with symbols of their own choice. Let them be imaginative but at the same time real. Make students understand that symbols are used to save space and to make the map easier to read. Symbols may be small drawings, lines, letters, shortened words or coloured areas. The symbols used on the map must be explained in the key. Besides the key, students need to include a title, compass rose and a linear scale. Some features that may be included are settlements, roads, bridges, airport, capital city, hotel, restaurant, church, historic sites, school, hospital, beaches, lake, mountain or mountain range, forest, river, peninsula etc. Students need to briefly describe the island they have created.</td>
</tr>
<tr>
<td>Assessed by the teacher</td>
<td>Externally moderated</td>
</tr>
<tr>
<td>20% of total marks</td>
<td></td>
</tr>
</tbody>
</table>

| TASK 2 | Learning Outcome 7.3
Assessment Criteria: Use Google Maps or any other mapping app to figure out the best way to get to places and to plan journeys using various modes of transport. |
|---|---|
| **20 marks** | Students are asked to plan a local and a foreign journey using Google Maps https://www.google.com/maps
Local Journey: Plan a sightseeing tour of Malta and/or Gozo for a friend visiting the islands for the first time. Use Google Maps to plan an itinerary of at least four places to visit (e.g. Ħaġar Qim, National History Museum, Mdina, Golden Bay, Valletta, Cittadella, Gozo etc.). Find out the opening hours of museums to visit, how to get there by selecting the desired mode of transport (driving, public transport, walking, cycling), distance and duration of each journey. Students need to present a captioned image of each site to visit, opening hours of museums and historical places, admission fee, the straight line and actual distance by road, mode of transport to use and duration, print out of directions and a map indicating each route taken.
Foreign Journey: Plan a four-day stay in Rome (taken here as an example). Use Google Maps to find a hotel within the established budget and check if rooms are available. Plan an itinerary of at least four places to visit (e.g. St Peter’s Basilica, Colosseum, Trevi Fountain, Piazza Navona, Palatine Hill and Pyramid of Caius Cestius). Students need to present details and amenities of the hotel selected, a captioned image of each site to visit, opening hours of museums and historical places, the straight line and actual distance by road from the hotel to the site, mode of transport to use and duration, print out of directions and a map indicating each route taken. |
| Assessed by the teacher | Externally moderated |
| 20% of total marks | |
TASK 3

Learning Outcome 7.4

Assessment Criteria: Use the following weather instruments namely; the anemometer, wind vane, rain gauge, maximum and minimum thermometers to collect data.

| 20 marks | Students will be presented with weather instruments and work collaboratively in a group to collect weather data. Students will handle weather instruments, namely an anemometer, a wind vane, a rain gauge and a maximum and minimum thermometer. Students identify what each instrument measures, what units of measurements are used and understand how it works. Students will then take actual readings using all the instruments mentioned above in various locations of the school grounds. Individually students need to present:
| the name of each instrument used;
| identify the weather element each instrument measures;
| unit of measurement of each instrument;
| describe in brief how each instrument works;
| draw a labelled diagram and/or photo of each instrument;
| present readings in the form of a table;
| plan of the school showing where readings were taken. |

Assessed by the teacher

Externally moderated

20% of total marks

TASK 4

Learning Outcome 7.5

Assessment Criteria: Use the internet to find out the weather report and forecast of local and foreign places.

| 20 marks | Students will access the official website of the Malta International Airport Meteorological Office https://www.maltairport.com/weather/7-day-forecast/ to obtain the weather report for the day and the forecast for the next six days for Malta. Students can also verify if the forecast for the day as presented by MET Office is accurate. They can compare how the temperature, wind, and rainfall vary in a number of localities (e.g. Dingli, Valletta, Selmun, Xewkija). Students will also be asked to examine the weather forecast elsewhere around the world. Present students with a number of cities (at least 4) located at different latitudes in the Northern and Southern Hemisphere. Students will use the internet to locate these cities and find the weather forecast for each city. Students need to:
| write a weather report for the day for Malta as presented by the MET Office;
| write the temperature, wind speed and direction and rainfall totals for two other localities in Malta;
| comment if the weather report for the day as presented by the MET Office is accurate;
| present a 7-day forecast for four cities from around the world;
| list of items to pack in your luggage if visiting any two of the cities providing reasons for choosing particular items. |

Assessed by the teacher

Externally moderated

20% of total marks
| TASK 5 | Learning Outcome 7.6
Assessment Criteria: **Conduct a survey regarding the nationality of a select number of students/community members. Present the results obtained from the survey by means of maps, graphs, pictographs etc. Research about the geography and other aspects (flag/language/customs/cuisine) of the country of origin of students/community members.** |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20 marks</td>
<td>Carry-out collaboratively a survey to discover the nationality of students in a particular year group and present the data in graphical form such as a bar graph, pictograph or on a world map. Each student then needs to carry-out a simple research on one of the countries of origin of foreign students. Students can present their work as a project, a set of charts, a brochure or in any other format. Each project may include:</td>
</tr>
<tr>
<td>Assessed by the teacher</td>
<td></td>
</tr>
<tr>
<td>Externally moderated</td>
<td></td>
</tr>
</tbody>
</table>
| 20% of total marks | • a map showing the name of the country, capital city, other major cities, physical features (rivers, mountains, volcanoes etc.);
• the name of the country, capital city, the major language (s) spoken, the location (continent and neighbouring countries) and a drawing of the national flag;
• geography of the country including major landforms such as rivers, lakes, oceans and mountain ranges, landmarks, total population, major cities and bodies of water;
• climate and any common weather hazards
• any interesting facts (modes of transport, native animals, popular foods, how people dress);
• places of interest which attract tourists. |

| TASK 6 | Learning Outcome 7.8, 7.9, 7.10
Assessment Criteria: **Draw and label a diagram showing the local geological sequence of rock strata. Identify the surface rock using a simple geological map of Malta. Describe the main characteristics of each rock type. Give the main uses of each rock type.** |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20 marks</td>
<td>For this school-based assessment students need to access the Reusable Learning Objects (RLOs) which are available online via the iLearn Virtual Learning Environment (VLE). Students need to complete the RLOs entitled:</td>
</tr>
<tr>
<td>Assessed by the teacher</td>
<td></td>
</tr>
<tr>
<td>Externally moderated</td>
<td></td>
</tr>
</tbody>
</table>
| 20% of total marks | • The five rock layers of the Maltese Islands, and
• The Geology of the Maltese Islands.
Through these digital resources students can understand the properties of each rock layer, see images of samples of each rock type, investigate the use of each rock type and read a simplified geological map of Malta. Students need to present a print out of the assessment tasks for each of the two RLOs listed above. |
Marking Criteria – YEAR 7

<table>
<thead>
<tr>
<th>SBA 1</th>
<th>Imaginary Island</th>
<th>1 - 6 marks</th>
<th>7 – 12 marks</th>
<th>13 – 20 marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Island shape is basic and overall appearance is poor.</td>
<td>Overall appearance of the island shape is satisfactory.</td>
<td>Island shape is creative, neat and well presented.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Some of the elements of the map (key, compass rose and scale) are missing.</td>
<td>Key contains an almost complete set of symbols.</td>
<td>Map contains title, key, compass rose and scale properly placed on the map.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Key lacks several symbols and is difficult to understand.</td>
<td>Compass rose has some missing and/or inaccurate elements.</td>
<td>Key is easy-to-find and contains all the symbols used on the map. Symbols are easy to understand.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear scale is inaccurately drawn.</td>
<td>Linear scale is satisfactory but has some inaccuracies.</td>
<td>Compass rose contains cardinal and the sub-cardinal directions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Description of the island is very basic.</td>
<td>Short description explains only some features of the island.</td>
<td>Linear scale is accurately drawn.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Short description of the island is very well explained.</td>
</tr>
<tr>
<td>SBA 2</td>
<td>Planning Journeys</td>
<td>Made an attempt to show itinerary but lacks most of the information required.</td>
<td>Some elements required are missing or incorrect.</td>
<td>All required elements (image of each site to visit, opening hours and admission fee) are present and correct.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Most of the measurements are incorrect.</td>
<td>Some actual distances and straight line distances are not measured accurately.</td>
<td>Actual distances and straight line distances are correctly measured.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Directions and maps presented lack accuracy, neatness and clarity.</td>
<td>Directions and maps presented with some inaccuracies.</td>
<td>Directions to each site and maps are orderly presented.</td>
</tr>
<tr>
<td>SBA 3</td>
<td>Weather Investigation</td>
<td>Description of weather instruments lacks accuracy and clarity.</td>
<td>Description of how each weather instrument works is satisfactory.</td>
<td>Clear description of how each weather instrument works indicating also the correct weather element and unit of measurement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagrams/images of weather instruments are poorly labelled.</td>
<td>Diagrams/images of weather instruments are not well captioned.</td>
<td>Diagrams/images of weather instruments clearly labelled and presented in an excellent way accompanied with a detailed plan of the school grounds where the study was carried out.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limited evidence of any weather readings.</td>
<td>Readings taken contain some inaccuracies but overall presentation is adequate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presentation is poor.</td>
<td>School plan lacks some detail and not all the locations are clearly marked.</td>
<td></td>
</tr>
</tbody>
</table>
| SBA 4 | Weather Reports and forecasts | • Lacks most of the elements required.
• Contains inaccuracies in most tasks.
• Lists only a few items.
• Work is poorly presented. | • Some elements required are missing or incorrect.
• List of items is too basic.
• Work is adequately presented. | • All required elements (MET Office Report, weather data for two localities, and 7-day forecast for two foreign cities) are all presented and clearly organised.
• Provides two lists of items to go in the suitcase according to the weather forecast for each city. |
|---|---|---|---|
| SBA 5 | Research on a country | • Presentation and content on the map is poor with most requirements missing.
• Contains only a few facts about the country.
• Little or no evidence of research. | • Overall presentation of the map is satisfactory with some missing requirements.
• Information about the country is relatively clear however not complete.
• Presentation is adequately.
• Contains some missing elements and pictures used are not placed appropriately or not captioned.
• Shows some evidence of research. | • Made an accurate map of the country and included all the requirements.
• Information is organised clearly and coherently.
• All required elements are present as well as pictures and information related to the country.
• Shows evidence of effective research and preparation. |
| SBA 6 | Geology of the Maltese Islands (RLOs) | • Accessed the two RLOs and obtained between 1% and 30% of the total marks. | • Accessed the two RLOs indicated and obtained between 31% and 60% of the total marks. | • Accessed the two RLOs indicated and obtained over 61% of the total marks. |
Reporting to Parents/guardians

A digital reporting system will be used to report the progress of students to parents/guardians. List of students in each class and learning outcomes to be covered in that particular year will be made available on the digital platform.

The ticking of broad learning outcomes according to the achievement of the students for work conducted in class, at home or a combination of both, will provide students and parents with more information about the progress achieved during the scholastic year. It is expected that this information will support further learning and raise the engagement and achievement levels of the students. Evidence for written tasks will be found in the students’ workbooks, copybooks, school files or other students’ materials.

A five-point Likert scale is used to measure if students have mastered or not each learning outcome of the learning and assessment programme. These include:

- Not achieved
- Partially achieved
- Satisfactorily achieved
- Fully achieved
- Not applicable

Teachers need to choose and mark one of the five options available for each student over the course of the scholastic year. The learning outcomes that are going to be assessed and reported include:

<table>
<thead>
<tr>
<th>YEAR 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

To be able to tick the broad learning outcomes of the year/subject, teachers are kindly asked to view the online video tutorials containing step by step content through the links available as follows: https://vimeo.com/298128409
<table>
<thead>
<tr>
<th>English Term</th>
<th>Maltese Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>anemometer</td>
<td>anemometru</td>
</tr>
<tr>
<td>Antarctic Circle</td>
<td>iċ-Ċirku Antartiku</td>
</tr>
<tr>
<td>Arctic Circle</td>
<td>iċ-Ċirku Artiku</td>
</tr>
<tr>
<td>average temperature</td>
<td>temperatura medja</td>
</tr>
<tr>
<td>barometer</td>
<td>barometru</td>
</tr>
<tr>
<td>Blue Clay</td>
<td>tafal (blat tafli)</td>
</tr>
<tr>
<td>clayey soil</td>
<td>ħamrija taflija</td>
</tr>
<tr>
<td>climate graph</td>
<td>graff klimatika</td>
</tr>
<tr>
<td>compass</td>
<td>boxxla</td>
</tr>
<tr>
<td>continent</td>
<td>kontinent</td>
</tr>
<tr>
<td>country</td>
<td>pafjiż</td>
</tr>
<tr>
<td>degrees Celsius (°C)</td>
<td>gradi Celsius (°C)</td>
</tr>
<tr>
<td>direction</td>
<td>direzzjoni</td>
</tr>
<tr>
<td>Equator</td>
<td>l-Ekwatur</td>
</tr>
<tr>
<td>erosion</td>
<td>erożjoni</td>
</tr>
<tr>
<td>fossil</td>
<td>fossila</td>
</tr>
<tr>
<td>geological map</td>
<td>mappa ġeoloġika</td>
</tr>
<tr>
<td>geologist</td>
<td>ġeologu</td>
</tr>
<tr>
<td>geology</td>
<td>ġeoloġija</td>
</tr>
<tr>
<td>Globigerina limestone</td>
<td>Globigerina</td>
</tr>
<tr>
<td>Greensand</td>
<td>Ġebla s-safra / Rina jew Ramli</td>
</tr>
<tr>
<td>Greenwich Meridian</td>
<td>il-Meridjan ta’ Greenwich</td>
</tr>
<tr>
<td>human features</td>
<td>fattizzi umani</td>
</tr>
<tr>
<td>impermeable rock</td>
<td>blat impermeabbli</td>
</tr>
<tr>
<td>International Date Line</td>
<td>il-Linja tad-Data Internazzjonali</td>
</tr>
</tbody>
</table>
latitude
layer of rock
limestone
linear scale
longitude
Lower Coralline limestone
Lower Globigerina Limestone
map
map key/legend
map symbols
maximum temperature
meteorological office
minimum temperature
North Pole
ocean
permeable rock
physical features
plan
porous rock
quarry
rain gauge
rainfall graph
red/terrarossa soil
rock sample
scale
sedimentary rock
sheer cliff
<table>
<thead>
<tr>
<th>English</th>
<th>Maltese</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Pole</td>
<td>Pol tan-nofsinhar</td>
</tr>
<tr>
<td>statement of scale</td>
<td>skala miktuba</td>
</tr>
<tr>
<td>Stevenson screen</td>
<td>l-ilqugh ta’ Stevenson</td>
</tr>
<tr>
<td>temperature graff</td>
<td>graff tat-temperatura</td>
</tr>
<tr>
<td>thermometer</td>
<td>termometru</td>
</tr>
<tr>
<td>Tropic of Cancer</td>
<td>it-Tropiku tal-Kankru</td>
</tr>
<tr>
<td>Tropic of Capricorn</td>
<td>it-Tropiku tal-Kaprikornu</td>
</tr>
<tr>
<td>Upper Coralline Limestone</td>
<td>Qawwi ta’ Fuq</td>
</tr>
<tr>
<td>weather forecast</td>
<td>tbassir tat-temp</td>
</tr>
<tr>
<td>weather instrument</td>
<td>strument tat-temp</td>
</tr>
<tr>
<td>wind rose</td>
<td>warda tal-irjieh</td>
</tr>
<tr>
<td>wind vane</td>
<td>pinnur</td>
</tr>
</tbody>
</table>
IEŻAMIJET ANNVALTI TAL-ISKESZJA SEKONDEMIJET

Ġeogrāfija

Isem: ________________________________ Klassi: ________________

Wieġeb il-mistoqsijiet kollha.

Tahriġ 1

Ħares lejn il-mappa u t-tifsira taghha f’disinn 1 u wieġeb il-mistoqsijiet kollha.

a. X’jisimha t-triq fejn joqghod Stephen?

..

(1)

b. Liema huma ż-żewġ toroq li jmissu mal-iskola?

..

(2)

..

(1)

d. Mil-liema toroq irid jgħaddi Stephen biex imur l-iskola?

..

..

..

(3)

e. Xi kemm għandu bogħod Stephen biex jasal sal-venda tal-karozzi tal-linja?

(70m, 700m, 70km).

(2)

f. Xi kemm hemm bogħod mill-bandli sa l-knisja? (kejjel dritt)

(2)

g. Mid-dar ta’ Stephen il-knisja qegħda lejn il- (Lvant, Majjistral, Punent, Grigal).

(1)

(2)

Tahriġ 2

Disinn 2 u 3 juru ż-żewġ mapep tal-Amerika t’Iṣfel.

a. Ikteb l-isem tal-pajjiż jew gżejjer.

<table>
<thead>
<tr>
<th></th>
<th>Pajjiż/Gżejjer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L-akbar pajjiż fl-Amerika t’Iṣfel.</td>
</tr>
<tr>
<td>2</td>
<td>Pajjiż fl-Amerika t’Iṣfel li ma jmissx mal-baħar.</td>
</tr>
<tr>
<td>3</td>
<td>Pajjiż li għandu l-akbar kosta fl-Oċean Paċifiku.</td>
</tr>
<tr>
<td>4</td>
<td>Pajjiż li linja tal-Ekwatur tghaddi minn fuqu.</td>
</tr>
<tr>
<td>5</td>
<td>Gżejjer li jinsabu fl-Oċean Atlantiku.</td>
</tr>
</tbody>
</table>

(5)

b. Kompli dawn is-sentenzi billi tuża disinn 2 u 3.

Fil-punent tal-Amerika t’Iṣfel insibu katina twila ta’ muntanji li ġġib l-isem

L-oghla muntanja fosthom hija .. u hija gholja .. metru. Din il-muntanja tinsab fil-pajjiż li jġib l-isem

(4)

c. Wieġeb billi tuża disinn 2 jew 3.

i. F’liema żewġ pajjiż jinsab id-Deżert ta’ Atakama?

.. .. (2)
ii. X’jisimha l-itwal xmara tal-Amerika t’Isfel?

.. (1)

iii. Semmi xmara oħra li tinsab fl-Amerika t’Isfel.

.. (1)

.. (2)

v. Il-latitude 50° Nofsinhar (50° South) jghaddi minn fuq żewġ pajjiżi fl-Amerika t’Isfel. Liema huma?

.. ... (2)

vi. Semmi żewġ pajjiżi li l-lonġitudni 60° Punent (60° West) jghaddi minn fuqhom.

.. ... (2)

Taħriġ 3

a. Wieġeb dawn il-mistoqsijiet.

![Disinn 4](image)

i. X’jissejjah l-istrument numru 1? ...

ii. Ghalfejn nużaw l-istrument numru 1?

...

...

iii. X’jissejjah l-istrument numru 2? ..

iv. Xi jkejjel l-istrument numru 2?

...

...

v. L-istrument numru 3 jkejjel ix-xita. X’jissejjah dan l-istrument?

...

(7)

Disinn 5

i. Agħti raġuni għaliex Clayton m’għażilx post A.

...

...

ii. Agħti raġuni għaliex Clayton m’għażilx post B.

...

...

iii. Għaliex taħseb li Clayton għażel post C?

...

...

...

...

(6)

Tahriġ 4

a. Kompli l-graff f’disinn 6 li turi t-temperatura tal-Gżejjer Maltin billi tuża t-temperaturi mogħtija fit-tabella t’hawn isfel.
L-ewwel tnejn inhadmu bħala ezempji.

<table>
<thead>
<tr>
<th>Xahar</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>Ġ</th>
<th>L</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura (°C)</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>27</td>
<td>27</td>
<td>24</td>
<td>22</td>
<td>18</td>
<td>15</td>
</tr>
</tbody>
</table>
b. Wieżeb dawn il-mistqisjiet.

i. X’istrument intuża biex inġabret din l-informazzjoni?

..

ii. Fejn għandu jitpoġġa dan l-istrument biex jagħtina kejl preċiż?

..

iii. Kemm kienet it-temperatura medja fix-xahar ta’ April?

..

iv. Liema huma l-aktar xhur sħan?

.. ..
v. Liema huma l-aktar xhur keshin?

.. ..

(7)

Taħriġ 5
Annalise pingqiet il-blat li nsibu fil-Gżejjer Maltin fuq *chart*. Iċ-*chart* ta’ Annalise bl-ismijiet tal-blat tidher f’disinn 7.

Disinn 7

a. Liema minn dawn is-sentenzi huma vera jew hżiena skont dak li pingqiet u llejbiljat Annalise?

<table>
<thead>
<tr>
<th></th>
<th>Veru</th>
<th>Falz</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.</td>
<td>Il-blat Malti huwa magħmul minn saffi.</td>
<td></td>
</tr>
<tr>
<td>ii.</td>
<td>Il-Qawwi ta’ Taht ifforma l-ewwel.</td>
<td></td>
</tr>
<tr>
<td>iii.</td>
<td>Blat magħmul saff fuq l-ieħor jissejjah blat vulkaniku.</td>
<td></td>
</tr>
<tr>
<td>iv.</td>
<td>Il-Globiġerina hija eqdjem mill-Qawwi ta’ Fuq.</td>
<td></td>
</tr>
<tr>
<td>v.</td>
<td>Ir-Rina u t-Tafli iffurmaw fl-istess żmien.</td>
<td></td>
</tr>
<tr>
<td>vi.</td>
<td>Kull saff ħa 50 sena biex ifforma.</td>
<td></td>
</tr>
<tr>
<td>vii.</td>
<td>Qatt ma nistgħu nsibu t-Tafal fuq il-Qawwi ta’ Fuq.</td>
<td></td>
</tr>
</tbody>
</table>

(4)
b. Ikteb il-verżjoni t-tajba tas-sentenzi li inti mmarkajt bħala ħżiena f’taħriġ 5a.

..
..
..
..
..
..

(9)

c. Annalise spjegat lil sħabha xi karatteristici ta’ kull saff. Qaltilhom li l-blat ta’ Malta mhux kollu xorta. Hemm xi blat li huwa permeabbli u blat ieħor li huwa impermeabbli. Ikteb xi jfisser dan il-kliem u agħti eżempju ta’ kull tip:

i. Permeabbli: ..
...
Eżempju: ...

ii. Impermeabbli: ..
...
Eżempju: ...

(6)

d. Annalise urithom ukoll xi kampjuni ta’ blat. Ikteb l-isem tal-ġebla t-tajba ħdejn kull deskrizzjoni.

i. Blat artab ta’ lewn griż li jaħmuh fil-forn biex jagħmlu l-fuhħar.
...

ii. Blat li jghaddi l-ilma minnu li ġhandu lewn bajdani u safrani, jinqata’ fil-barrieri u minnu jagħmlu blokok u ċangaturi biex jibnu d-djar.
...

39
iii. Blat iebes ħafna u reżistenti li jghaddi l-ilma minnu. Ifforma l-ewwel u jiktisser fil-barrieri biex jagħmlu ż-żrar u l-briks.

...

(6)

![Image](image_url)

Disinn 8

..
...