Name: _________________________ Class: _______________

Useful Data: Atomic numbers and relative atomic masses are shown in the periodic table printed below.

One mole of any gas occupies 22.4 dm3 at standard temperature and pressure

Faraday constant = 96500 C mol$^{-1}$ Q = It

1	H																			
2																				
3																				
4	He																			

Key:

- a relative atomic mass
- b symbol
- X atomic number

Marks Grid [For Examiner’s use only]

<table>
<thead>
<tr>
<th>Question No.</th>
<th>Section A</th>
<th>Section B</th>
<th>Theory Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Max Mark</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Actual Mark

<table>
<thead>
<tr>
<th>Theory Paper: 85%</th>
<th>Practical: 15%</th>
<th>Final Score: 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SECTION A – Answer ALL questions. This section carries 60 marks.

1a. Use the given periodic table to find the name of:
 (i) an alkali metal __________________________ [1]
 (ii) the element whose atoms contain 6 protons __________________________ [1]
 (iii) a transition metal which is in period 4 __________________________ [1]
 (iv) an element which exists as a liquid at room temperature __________________________ [1]
 (v) the most reactive non-metal __________________________ [1]

1b. Use the given periodic table to find the symbol of:
 (i) the most reactive metal __________________________ [1]
 (ii) the element whose atoms contain 4 electrons __________________________ [1]
 (iii) an element which is magnetic __________________________ [1]
 (iv) a very reactive metal which has to be stored under oil __________________________ [1]
 (v) a very good electrical conductor commonly used in wires __________________________ [1]

2. State the colour of:
 a. solid iodine __________________________ [1]
 b. iodine vapour __________________________ [1]
 c. universal indicator in dilute hydrochloric acid __________________________ [1]
 d. Cu^{2+} (aq) __________________________ [1]
 e. the Bunsen flame in which a crystal of sodium chloride is placed __________________________ [1]
 f. the substance which results when water is removed from hydrated copper (II) sulfate __________________________ [1]
 g. the solution which results when chlorine gas is bubbled through a solution of potassium iodide __________________________ [1]
 h. the precipitate which forms when acidified silver nitrate is added to a chloride solution __________________________ [1]
 i. the precipitate which forms when NaOH solution is added to iron (II) chloride solution __________________________ [1]
 j. the solid which forms when the precipitate formed in 2 (i) above is left to stand in air __________________________ [1]
3 This question is about the reactivity of different substances.

a. (i) Arrange the following metals in order of their chemical reactivity, placing the most reactive metal first.

\[
\text{copper, sodium, iron, zinc, magnesium}
\]

(ii) Between which two metals should hydrogen be placed?

(iii) Zinc is used in galvanising. Explain what this means and why it is done.

b. (i) Arrange the following halogens in order of their chemical reactivity, placing the most reactive first.

\[
bromine, chlorine, fluorine, iodine
\]

(ii) Give one reason why these elements are classified as non-metals.

(iii) Considering the positions of chlorine and bromine in the Periodic Table, give two reasons why chlorine is more reactive than bromine.

(iv) Why would you expect potassium fluoride to be soluble in water?

4. Last year Johann went to Germany on a student exchange visit. Whilst there, he visited an ammonia producing factory.

a. Fill in:
Ammonia is manufactured by the _______________ process in which the two elements ______________ and ______________ are combined directly together. The two gases are compressed at a pressure of ______________ atmospheres and passed over a catalyst made of ______________ at ______________ °C. [3]

b. Write a balanced chemical equation for the reaction.

[2]

c. Describe a simple test which could be carried out in the laboratory to identify ammonia and state the result you would expect.

[2]

d. The guide who took them round the factory said that most of the ammonia produced is reacted with an acid to produce ammonium nitrate. Ammonium nitrate is a powerful explosive. A tremendous explosion occurred in 1921 which killed all the workers involved in the process.

(i) Write a balanced chemical equation for the production of ammonium nitrate from ammonia and an acid.

[2]

(ii) State one important use of ammonium nitrate besides explosives.

[1]
5 This question is about Period 3 of the Periodic Table.

| Na | Mg | Al | Si | P | S | Cl | Ar |

a. (i) Write the electronic configuration of Sodium.
__ [1]

(ii) How does the number of the group in the Periodic Table in which they are found relate to the electronic configuration of each element?
__ [1]

(iii) How does the metallic character of the elements change across Period 3?
__ [1]

(iv) Explain why Al is an amphoteric metal.
__ [1]

b. Complete the following table:

<table>
<thead>
<tr>
<th>Element</th>
<th>Formula of an oxide</th>
<th>Formula of a chloride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon</td>
<td>SiO₂</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td></td>
<td>NaCl</td>
</tr>
<tr>
<td>Sulfur</td>
<td>SO₂</td>
<td></td>
</tr>
</tbody>
</table>

[3]

c. Sulfur dioxide is one of the gases causing acid rain.

(i) Name one other gas which increases the acidity of rain water.
__ [1]

(ii) Give a likely pH for acid rain.
__ [1]

(iii) Give one undesirable effect of acid rain.
__ [1]
6 Two scientists Deborah and Maria, decided to carry out qualitative analysis on a green compound.

These were their observations:

When the green powder A was heated strongly it decomposed to form a black compound B, and a colourless gas which turned limewater milky.

When this black compound B was mixed with dilute nitric acid, a blue solution C formed.

On adding NaOH solution to solution C a blue precipitate D formed.

<table>
<thead>
<tr>
<th>a. Name the substances A to D:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=</td>
</tr>
<tr>
<td>B=</td>
</tr>
<tr>
<td>C=</td>
</tr>
</tbody>
</table>
| D= | [4]

<table>
<thead>
<tr>
<th>b. Write balanced chemical equations, including state symbols, for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) the decomposition of compound A</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(ii) the reaction of solution C with NaOH solution</td>
</tr>
</tbody>
</table>
| | [3]
SECTION B – Answer TWO questions only on the foolscap provided. This section carries 40 marks.

7a. Charles, a technician in a school chemistry laboratory found a 1-litre bottle of sodium hydroxide solution of unknown concentration. He had a standard solution of 0.5 mol dm\(^{-3}\) sulfuric acid and so he decided to carry out a titration to find the concentration of the alkali. He measured four 25 cm\(^3\) aliquots (portions) of the sulfuric acid and placed each in a conical flask. He used phenolphthalein as an indicator for this titration.

(i) Write a balanced chemical equation for the reaction between H\(_2\)SO\(_4\) and NaOH. [2]

(ii) Describe how you can carry out this titration. [5]

(iii) Draw a labelled diagram of how the apparatus should be set up. [4]

(iv) How would Charles know that the end point has been reached? [1]

b. The results of the titration were put in the following table:

<table>
<thead>
<tr>
<th>Titration</th>
<th>Titration 1</th>
<th>Titration 2</th>
<th>Titration 3</th>
<th>Titration 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final burette reading (cm(^3))</td>
<td>19.55</td>
<td>39.40</td>
<td>19.30</td>
<td>40.35</td>
</tr>
<tr>
<td>Initial burette reading (cm(^3))</td>
<td>0.00</td>
<td>20.00</td>
<td>0.00</td>
<td>21.00</td>
</tr>
<tr>
<td>Titre value (cm(^3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(i) Work out the titre values for each titration. [2]

(ii) Calculate the average titre value. [2]

(iii) Use the average titre value to calculate the concentration of the NaOH solution. [4]

8a. During a school experiment Kurt set up the apparatus shown on the right in order to cover an iron spoon with silver.

(i) What is this process called? [1]

(ii) Explain why the spoon must be connected as the cathode. [3]

(iii) Conduction in copper wires occurs due to a flow of electrons. In the solution there are no free electrons. Therefore how does conduction take place? [1]

(iv) What ions are present in silver nitrate solution? [2]
b. Use half equations to **explain** what is happening:

(i) at the **anode**

(ii) at the **cathode**

[4] [4]

c. The cell is left on for 1.5 hours with a current of 0.5 Amps flowing through it.

(i) Calculate the amount of charge which has passed through the cell. [2]

(ii) At the end of 1.5 hours, what mass of silver would have been deposited on the iron spoon? [3]

[4]

9a. Redox reactions occur when two substances undergo a particular change at the same time.

Ritienne decided to investigate one such reaction by burning a piece of magnesium.

(i) What did Ritienne observe when the piece of magnesium was burned in air? [1]

(ii) Give one important safety precaution related to this experiment. [1]

(iii) Write a balanced chemical equation for this reaction (include state symbols). [3]

(iv) Explain which element is being oxidized and which is reduced in **terms of electron transfer**. [4]

b. Ritienne collected the magnesium oxide on the watch-glass. It was found to weigh 8 g.

(i) Explain how Ritienne could weigh, as accurately as possible, the magnesium oxide. [3]

(ii) Calculate the mass of the original magnesium which was burnt. [3]

(iii) What volume of oxygen (at s.t.p.) was used in this experiment? [2]

(iv) Calculate the volume of oxygen that would be needed if the experiment were carried out at 60 °C instead of at s.t.p. [3]

End of paper.